Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Solution Components</td>
<td>3</td>
</tr>
<tr>
<td>Before You Begin</td>
<td>3</td>
</tr>
<tr>
<td>Pre-Installation Checklist</td>
<td>4</td>
</tr>
<tr>
<td>Installation Steps</td>
<td>4</td>
</tr>
<tr>
<td>NetFlow Integrator</td>
<td>5</td>
</tr>
<tr>
<td>Agentless Deployment</td>
<td>5</td>
</tr>
<tr>
<td>NFI Configuration</td>
<td>5</td>
</tr>
<tr>
<td>Network Operations Analytics Module</td>
<td>6</td>
</tr>
<tr>
<td>Reported Metrics</td>
<td>6</td>
</tr>
<tr>
<td>Network Path Reporting and Rendering</td>
<td>6</td>
</tr>
<tr>
<td>How sFlow and Sampling Affect Path Reporting</td>
<td>8</td>
</tr>
<tr>
<td>How VDS Configuration Affects Path Reporting</td>
<td>9</td>
</tr>
<tr>
<td>Module Configuration</td>
<td>9</td>
</tr>
<tr>
<td>Network Operations Analytics for Splunk</td>
<td>13</td>
</tr>
<tr>
<td>NetOps Splunk App Installation</td>
<td>13</td>
</tr>
<tr>
<td>NetOps Splunk App Dashboards</td>
<td>13</td>
</tr>
<tr>
<td>Path Analytics Dashboard</td>
<td>13</td>
</tr>
<tr>
<td>Top Tunnels (VTEPs) Dashboard</td>
<td>15</td>
</tr>
<tr>
<td>Top VMs by Traffic Dashboard</td>
<td>16</td>
</tr>
<tr>
<td>Network Health Dashboard</td>
<td>16</td>
</tr>
<tr>
<td>Start Your Trial</td>
<td>17</td>
</tr>
</tbody>
</table>
Introduction

This solution brings new operational capabilities to Network Administrators or Virtual Administrators by providing complete visibility into virtual and physical networks.

One of the biggest operational concerns for IT Operations and Virtual Network Administrators is the lack of visibility between the virtual and physical networking layers -- how to trace and troubleshoot connectivity issues. Lacking traceability leads to longer time to resolution, and unacceptable outage time frames for many customers.

NetFlow Logic’s Network Operations Analytics provides an easy and scalable way to analyze the massive volumes of network metadata generated by your routers, switches, next generation firewalls, load balancers (Cisco ASA, F5, Palo Alto Networks, etc.) – whether it is from a physical or virtual network, or both. This solution also provides end-to-end operational information about virtual and physical network traffic paths.

Monitor your end-to-end infrastructure to avoid service degradation or outages. Gain visibility into how network conversations traverse the virtual and physical network, including device interface health score, for efficient troubleshooting and planning.

The core of this solution is NetFlow Integrator™ (NFI) and Network Operations Analytics NFI Module (NetOps).

NFI is a processing engine for network flow data (NetFlow, IPFIX, sFlow, etc.).

NetFlow Integrator accepts network flow data from network devices (routers, switches, firewalls), applies map-reduce algorithms to the data to extract the information needed to address desired use cases, converts the processed data to syslog (or other formats such as JSON), then sends that useful information to your visualization platform or SIEM (e.g. VMware vRealize Log Insight, VMware vRealize Operations, or Splunk Enterprise).
Solution Components

Based on your environment you may choose appropriate components, listed below. You have to install three required NetFlow Logic’s components -- NetFlow Integrator, NFI Updater, and Network Operations Analytics Module, and one or more optional information management system components for visualization.

Table 1 – Solution Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Platform</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetFlow Integrator (NFI) RLS 2.4.4.0</td>
<td>Linux or Windows</td>
<td>NFI Server. This is core component for flow processing. Available for Windows, Linux, or as Virtual Appliance</td>
</tr>
<tr>
<td>NFI Updater RLS 2.4.4.0</td>
<td>Linux or Windows</td>
<td>NFI Updater. This component is for integration with vCenter (and optionally with NSX). Available for Windows or Linux</td>
</tr>
<tr>
<td>Network Operations Analytics (NFI Module)</td>
<td>NetFlow Integrator 2.4.4.0</td>
<td>NetFlow Integrator Module. This component contains analytics for the solutions. Select Windows or Linux version to match your NFI platform</td>
</tr>
</tbody>
</table>

Table 2 – Environment / Functionality Matrix

<table>
<thead>
<tr>
<th>Data Center Environment</th>
<th>NetOps Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any virtualized data center with heterogeneous network equipment capable of sending flows (NetFlow v5/v9, sFlow, IPFIX)</td>
<td>By processing flows from network devices, NetOps will report in real time: - Health score and Failure risk of network physical interfaces - Path between communicating end points (VM to VM or VM to Host)</td>
</tr>
<tr>
<td>VMware Virtual Distributed Switch (VDS)</td>
<td>All NetOps functionality is available. By enabling IPFIX on VDS, and flows on other network devices, NetOps will correlate virtual and physical traffic, resolving VM-to-Vmhost adjacency, and ToR (Top of the Rack) switches</td>
</tr>
<tr>
<td>VMware Virtual Standard Switch (VSS)</td>
<td>NetOps will function with VSS. By processing flows from network devices, NetOps will report Health score and Failure risk of network devices and interfaces. Path between communicating peers (VMs and/or physical hosts) is reported, but VM-to-Vmhost adjacency is not resolved</td>
</tr>
<tr>
<td>VMWare NSX</td>
<td>NetOps relies on VDS for correlating virtual and physical network traffic. Other components, including VMWare NSX virtualization platform itself, are optional</td>
</tr>
</tbody>
</table>

Before You Begin
Pre-Installation Checklist

Please be sure to have the following before you begin the installation of NetOps components:

✓ Installation Prerequisites – You have to login as root for Linux and administrator for Windows installations and updates of NetFlow Integrator and NFI Updater.

✓ License – A license from NetFlow Logic sales is required before you can begin using NetFlow Integrator software. Please contact sales@netflowlogic.com for a license.

✓ Physical and Virtual Network Devices - Please refer to the “Configuring NetFlow” section in your Cisco (or other) device or VMware VDS documentation.

✓ Visualization Platform – Splunk Enterprise or VMware vRealize Operations.

Installation Steps

2. Configure NFI input (port numbers where flow information is sent to from network devices and VDSs
3. Configure NFI output for Splunk (IP address and port number where NFI sends out syslogs)
4. Configure NFI SNMP data retrieval service
5. Install NFI Updater
6. Upload Network Operations Analytics Module into NetFlow Integrator – see “Module Configuration” on page 9 of this document
7. Configure Network Operations Analytics Module parameters:
 a. List of vCenter Virtual Machines – set automatic updates
 b. List of ToRs management addresses – this list is optional, but it would help resolving ToRs
8. Install and configure your visualization component:
9. Restart NetFlow Integrator – the system is operational within approximately 15 minutes
NetFlow Integrator

Agentless Deployment

Installing yet another agent on a large network to provide comprehensive network traffic information is costly, difficult to roll out and manage. NetFlow Integrator was designed to avoid those issues. A single instance of NFI, deployed in a data center, is capable of processing and analyzing massive volumes of network metadata.

Configure your all flow-capable exporters, such as ToR switches, core and aggregation switches, routers, and virtual switches, such as VDS or Open vSwitch to send NetFlow/sFlow/IPFIX to NetFlow Integrator.

NFI Configuration

NetFlow Integrator is available as Windows or Linux installers, or as a Virtual Appliance. When installed, NFI is automatically configured to listen to flow data on UDP port 9995. You can change this port and/or add additional ports to receive flows from all your exporters. You also need to configure NetFlow Integrator output. You can configure up to 16 output destinations.

You also need to install NFI Updater on the same server with NFI or on a separate server. NFI Updater is required for integration of the solution with vCenter.

Please refer to NetFlow Integrator Installation and Administration Guide for additional details.
Network Operations Analytics Module

This Module reports network health by detecting anomalies in traffic volume and packet rate. It reports health and failure risk of each interface of all physical network devices configured to send flows to NFI. Health score is calculated using multivariate algorithms based on the actual network traffic reported by network devices in flow records. It also reports virtual and physical network traffic paths for all VM-to-VM, VM-to-Host, and Host-to-Host conversations.

Reported Metrics

NetOps Module reports information about health of the network devices and their interfaces, as well as the actual path traversed through network devices by flows between communicating hosts (VMs or real hardware). This information is reported periodically, and the frequency is configurable (see Module Configuration section).

Table 3 – Reported Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Traffic Load</td>
<td>Interface relative load is computed by dividing actual traffic going through the interface by the nominal speed of the interface. The nominal speed is obtained through SNMP polling of the network device (ifSpeed or ifHighSpeed), %</td>
</tr>
<tr>
<td>Relative Packet Rate</td>
<td>Relative rate is computed by dividing current packet rate of the interface by the maximal packet rate sustainable at a current average packet size observed during the data collection interval, %</td>
</tr>
<tr>
<td>Health Score</td>
<td>The health score is a single value metric calculated for each network interface over a short data observation time interval, e.g. 30 seconds. It takes into account relative traffic load and relative packet rate on the interface. Health score values range from 0 to 100. The health above 40 is normal, indicating no attention is required. Health score between 25 and 40 is the indication of medium to serious problem. The score below 25 indicates that the interface is not functioning properly</td>
</tr>
<tr>
<td>Failure Risk</td>
<td>Failure risk is a predictive indicator. Its calculation is based on Health Score, Load, and Relative Rate, plus dynamic changes of these metrics. Failure risk values range from 0 to 100. The risk below 60 indicates that the interface has no problem and no problem is expected in the future. 60 to 75 indicate a low to medium chance of a failure. The risk above 75 indicates a serious problem now or failure in the near future.</td>
</tr>
</tbody>
</table>

Network Path Reporting and Rendering

Network path is a reconstruction of routes in a network taken by the traffic between a pair of communicating peers A and B (VM-to-VM, VM-to-Host, and Host-to-Host). Paths from A to B and from B to A are reported separately. It is important to keep in mind that flow-based path resolution is a best effort
process, as device adjacency may not be certain. Path reporting relies on forwarding information (next hop), when available, and on traffic statistical methods of the Module. In certain cases additional path resolution could be achieved by superimposing paths from A to B and from B to A. However, some segments of the network routes may remain unresolved, and are shown with dashed lines.

Let’s consider the following scenarios.

Scenario 1. Partially resolved network path

This example shows a partially resolved network path in the VM1 -> VM2 direction. Please note that the first hop (Host1 -> ToR1) is not resolved: ToR1 is a first network node in the segment which reports VM1 -> VM2 communication but we have no knowledge if there are other network nodes between Host1 and ToR1 which may be forwarding the traffic and not configured to send flows to NFI.

Scenario 2. Fully resolved network path

A complete resolved network path is produced by superimposing VM1 to VM2 and VM2 to VM1 communications observations, as each direction complements the unresolved segment of the path in the opposite direction.

Scenario 3. Multiple intersecting segments

This example shows topology with five devices where network traffic from Host1 (192.168.66.12) to Host2 (192.168.63.15) may pass in three different ways: D1 (192.168.63.151) to D3 (192.168.63.153) to D5
(192.168.63.155), D₄ (192.168.63.252) to D₅ (192.168.63.155), and D₂ (192.168.63.254). In practice this is a common load balancing scenario.

Please note a dashed line between D₅ and Host₂. This means that none of the nodes in this path was determined to be adjacent to the Host₂ and therefore this segment is shown as unresolved.

A dashed line between D₂ and Host₂ implies that traffic flowing from Host₁ to Host₂ was reported by device D₂ which did not provide any forwarding information and was not reported as next hop by any of the other devices, so both segments Host₁ to D₂ and D₂ to Host₂ are shown as unresolved.

Scenario 4. “A bag of routers”

In this example all network devices between Host₁ (192.168.66.12) and Host₂ (192.168.63.15) did not report any forwarding information, therefore all segments of three paths are shown as unresolved.

Scenario 5. Multiple paths to a device

In this example device D₁ reports traffic from Host₁ (192.168.66.12) to Host₂ (192.168.63.15) via a plurality of the interfaces. Such situation is possible when there is one or more intermediate network devices situated between Host₁ and D₁ (192.168.63.252) which do not report the traffic flows.

How sFlow and Sampling Affect Path Reporting

NetFlow Integrator NetOps Module determines path only from information carried in NetFlow. It will use next-hop IP address to build the corresponding path segment when this information is available. When next-hop is not reported in NetFlow, the Module will use statistical methods to build paths, thus the sampling rate of NetFlow or sFlow may have a direct effect on the accuracy of path building. In addition, as path building process is dynamic, sampling may result in showing path segments that are no longer active.
How VDS Configuration Affects Path Reporting

1. The Switch IP address is specified (Step 4)
2. The option Process internal flows only is disabled (Step 7)

Module Configuration

The Module should be uploaded into NFI and enabled. In NetFlow Integrator Home page click on upload button, and select the package to upload (e.g. network_operations_analytics-2.4.1.0.1256-linux-x86_64.zip).

Once uploaded, click on to enable the Module. You don’t have to restart the server – the Module is operational when enabled.

NetOps Module is highly configurable. Click on Network Operations Analytics Module and you will be presented with the following screen.
Contact NetFlow Logic support before changing any parameters.

Table 4 - Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default sampler rate</td>
<td>A default sampling rate for sampled flows for which exact sampling information is missing. min = 1, max = 100000, default = 1</td>
</tr>
<tr>
<td>Network path information reporting interval, sec</td>
<td>This parameter controls Network path periodic updates. Once discovered path is detected and reported, it will be reported again after this period of time. min = 120 sec, max = 14400 sec, default = 300 sec</td>
</tr>
<tr>
<td>Output method: 0 - syslog (push), 1 - REST (pull), 2 - both</td>
<td>This parameter controls how you want the output from this Package to be available. values {0, 1, 2}, default = 0</td>
</tr>
<tr>
<td>Inactivity timeout for network paths, sec</td>
<td>This parameter controls inactivity period after which path is no longer reported. min = 60 sec, max = 14400 sec, default = 300 sec</td>
</tr>
<tr>
<td>Network Operations Analytics</td>
<td>This parameter controls network health score reporting interval in seconds. Network health is reported in syslogs with nfc_id = 20180 and nfc_id = 20181. min = 5, max = 600, default = 23</td>
</tr>
</tbody>
</table>
Network Paths Analytics

This parameter controls the internal interval used in detecting paths between pairs of peers. min = 5, max = 600, default = 37

Network Paths Reporter

This parameter controls network path reporting interval in seconds. Network path is reported in syslogs with nfc_id = 20183. min = 5, max = 600, default = 203

VM - VM Hosts Adjacency

This parameter controls VM – VM Host-ToR Adjacency reporting interval in seconds. This information is reported in syslogs with nfc_id = 20184. min = 5, max = 600, default = 41

ToR Switches Discovery

This parameter controls the internal interval in seconds used in discovering ToR switches. min = 5, max = 600, default = 29

Top Tunnels

This parameter controls Top Tunnels reporting interval in seconds. This information is reported in syslogs with nfc_id = 20187. min = 15, max = 600, default = 30

List of vCenter Virtual Machines

This watch list is populated by NFI updater Agent by connecting to one or several vCenters

List of ToRs management addresses

This watch list helps the Module to determine which devices are Top of the Rack Switches. ToRs detected automatically if list is empty

Click on List of vCenter Virtual Machines to setup integration with vCenters, vShield, and NSX as shown below.

You don’t need to restart NetFlow Integrator or enable/disable the Module in order for the new parameters to take effect.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-update by VMWARE vCenter Virtual Machine monitor</td>
<td>This check box enables NFI Updater agent which queries vCenter and populates the list of Virtual Machines with their VDS and VTEP.</td>
</tr>
<tr>
<td>Next time</td>
<td>Next scheduled update time based on the schedule setting below.</td>
</tr>
<tr>
<td>Schedule/Expression</td>
<td>Unix cron expression</td>
</tr>
<tr>
<td>vCenter server name</td>
<td>IP address or name of vCenter server</td>
</tr>
<tr>
<td>vCenter user name/password</td>
<td>vCenter login credentials</td>
</tr>
<tr>
<td>Log level</td>
<td>Leave blank or set to DEBUG for troubleshooting</td>
</tr>
<tr>
<td>Data Records</td>
<td>This watchlist is csv list in the following format: VDS IPv4 address, VM IPv4 address, VM host, VTEP IPv4 address, VM name, VM UUID</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Records</td>
<td>Management IP addresses of network devices which are Top of the Rack Switches.</td>
</tr>
</tbody>
</table>
Network Operations Analytics for Splunk

This section describes installation, configuration, and user instructions of NetFlow Logic Network Operations Analytics for Splunk App (NetOps Splunk App).

NetOps Splunk App Installation

When you install this app it automatically creates the index flowintegrator, and UDP Input listening on port 10514 (NetFlow Integrator output should be configured to send data there).

Once you install the App you will be presented with this screen:

![Enable button](image)

Press Enable button and launch the App.

NetOps Splunk App Dashboards

Path Analytics Dashboard

This dashboard enables you to explore network conversations between communicating network peers.

First select the time interval and press <Submit> button. You will see a graph representing all network conversations during the selected time. Physical hosts are grouped in the inner circle, and VMs are grouped in the outer circle.
Narrow down the results by specifying full or partial IP address of communicating peers. Apply additional filters by specifying VTEP IP and/or VXLAN ID. Use the slider to highlight communicating endpoints affected by devices and interfaces with low health score.

Select the first object (A) by clicking on the IP address. Select the second object (B) from a drop down. The Path panel will dynamically populate with the path between the selected objects.

Explore paths by selecting direction: A->B, B->A, or bidirectional A<->B. This panel is a great way to see where the problem is. The color of network nodes indicates the health score of the interfaces in the path of communication between the selected objects.

The table on the right hand side provides the following information about the selected device:
• Device health score – a number between 0 and 100 with the lower scores indicating a device with one or more problematic interfaces
• Device failure risk score - a number between 0 and 100 with the higher scores indicating an interface with a high probability of failure
• Relative traffic load on a most active interface as a percent of its nominal capacity
• Relative packet rate on a most active interface as a percent of a maximal packet rate sustainable at a current average packet size

For interfaces relaying a traced communication the following information is presented:

• Interface health score
• Interface failure risk score
• Relative traffic load on this interface as a percent of its nominal capacity
• Relative packet rate on this interface as a percent of a maximal packet rate sustainable at a current average packet size
• A total number of bytes passed in each direction through this interface over a selected time interval
• A total number of packets passed in each direction through this interface over a selected time interval

Top Tunnels (VTEPs) Dashboard

This dashboard shows top VTEPs by traffic over selected period of time. Drill down functionality allows to view individual VM to VM conversations going through selected VTEP. You can drill down further by selecting VM to VM conversation to see the path of communication between peers, which shows VM hosts where virtual traffic is encapsulated, and how it traverses the physical network, including device interface health score, for efficient troubleshooting and planning.
Top VMs by Traffic Dashboard
This dashboard shows top VMs by traffic over selected period of time. Drill down to path to see VM to VM conversations over physical network.

Network Health Dashboard
In this dashboard the network devices comprising the physical and the virtual parts of the network are presented in a tree view. Icon colors indicate NFI health score of each device based on its interface with the lowest score. NFI health score is a number between 0 and 100 with lower scores corresponding to a problematic device. On this dashboard green icons indicate healthy devices while yellow icons identify devices reporting some abnormal conditions. Red icons indicate that one or more interfaces on a device are not functioning properly. Grey icons represent virtual network devices, such as VMware VDS. Their health score is not calculated.
When you click on a network device node, the tree expands showing all interfaces of the selected device, again color-coding them according to their health score. When you click on an interface, the drill-down panels on the right show the traffic details for the selected interface.

The table on the right hand side provides the following information about the selected interface:

- Interface health score – a number between 0 and 100 with the lower scores indicating a problematic interface
- Interface failure risk score - a number between 0 and 100 with the higher scores indicating an interface with a high probability of failure
- Ingress and egress traffic rate
- Ingress and egress packet rate
- Relative traffic load on the interface as a percent of its nominal capacity
- Relative packet rate as a percent of a maximal packet rate sustainable at a current average packet size

Three drilldown panels on far right show network traffic characteristics and interface wellbeing scores over a selected time interval. A 65% threshold mark displayed on the historic charts helps identifying time intervals when network paths served by this interface are in a high risk of failure territory.

From this dashboard you can jump to Path Analytics dashboard to view all network conversations going through the selected interface.

Start Your Trial

Download NetFlow Integrator and NetOps components and register to receive your 60-day evaluation license (https://www.netflowlogic.com/download/).