V2P Network Visibility
Solution Guide
Version 2.5.0 (Build 2.5.0.0.X)

December 2017
Contents

Overview ..2
Components and Functionality Matrix ..3
Before You Begin ..4
 Pre-Installation Checklist ..4
 Installation Steps ...4
NetFlow Optimizer ...5
 Agentless Deployment ..5
 NFO Configuration ...5
V2P Network Visibility Module ...6
 Reported Metrics ..6
 Network Path Reporting and Rendering ...6
 How sFlow and Sampling Affect Path Reporting ..8
 How VDS Configuration Affects Path Reporting ..8
 Module Configuration ...9
V2P Network Visibility for Splunk App ...13
 Installing into a Single Splunk Server ...13
 Installing into a Distributed Splunk Environment ..14
 Configure Universal Forwarder Input ..14
 Receiving Syslogs Directly from NFO (UDP port 10514) ..14
 Configuring Universal Forwarder with syslog-ng or rsyslog ..14
 Configure Universal Forwarder Output (Target Indexers) ..14
 V2P Network Visibility for Splunk App Dashboards ...15
 Path Analytics Dashboard ...15
 Top Tunnels (VTEPs) Dashboard ..17
 Top VMs by Traffic Dashboard ...18
 Network Health Dashboard ..18
Start Your Trial ..19
Overview

This solution brings new operational capabilities to network administrators or virtual infrastructure administrators by providing complete visibility into virtual and physical networks.

One of the biggest operational concerns for IT professionals and Software Defined Data Center (SDDC) administrators is the lack of visibility between the virtual overlay and physical networking layers -- how to trace and troubleshoot connectivity issues. Lacking traceability leads to longer time to resolution, and unacceptable outage time frames for many customers.

NetFlow Logic’s V2P Network Visibility provides an easy and scalable way to analyze the massive volumes of network metadata generated by your routers, switches, next generation firewalls, load balancers (Cisco ASA, F5, Palo Alto Networks, etc.) – whether it is from a physical or virtual network, or both. This solution also provides end-to-end operational information about virtual and physical network traffic paths.

Monitor your end-to-end infrastructure to avoid service degradation or outages. Gain visibility into how network conversations traverse the virtual and physical network, including device interface health score, for efficient troubleshooting and planning.

The core of this solution is NetFlow Optimizer™ (NFO) and V2P Network Visibility Module.

NFO is a processing engine for network flow data (NetFlow, IPFIX, J-Flow, sFlow, etc.). It accepts network flow data from network devices (routers, switches, firewalls) and from virtual switches, such as VDS or VSS. V2P Network Visibility Module correlates virtual overlay flows with physical network flows, determines the health of the network, and pinpoints physical network devices and interfaces with the greatest impact on VMs and application performance.
Components and Functionality Matrix

Based on your environment you may choose appropriate components, listed below.

Table 1 – Solution Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Platforms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetFlow Optimizer (NFO) RLS 2.5.0.0</td>
<td>Linux or Windows</td>
<td>This is a processing engine for various formats of flow data: NetFlow, IPFIX, sFlow, J-Flow, etc. Available for Windows, Linux, or as Virtual Appliance. Downloadable from NetFlow Logic’s web site – www.netflowlogic.com/download/</td>
</tr>
<tr>
<td>External Data Feeder for NFO RLS 2.5.0.0</td>
<td>Linux or Windows</td>
<td>This component is for integration with vCenter (and optionally with NSX). Downloadable from NetFlow Logic's web site – www.netflowlogic.com/download/</td>
</tr>
<tr>
<td>V2P Network Visibility (NFO Module)</td>
<td>NetFlow Optimizer 2.5.0.0</td>
<td>NetFlow Optimizer Module. This component contains analytics for the solutions. Select Windows or Linux version to match your NFO platform. Upload the zip file v2p_network_visibility-2.5.0.0.858-<platform>-x86_64.zip. Downloadable from NetFlow Logic’s web site – www.netflowlogic.com/download/</td>
</tr>
<tr>
<td>Technology Add-on for NetFlow (Splunk Add-on)</td>
<td>Splunk Enterprise 6.4 or above</td>
<td>Splunk TA to be installed on Splunk indexer and search head. Downloadable from https://splunkbase.splunk.com/app/1838/</td>
</tr>
</tbody>
</table>

Table 2 – Environment / Functionality Matrix

<table>
<thead>
<tr>
<th>Data Center Environment</th>
<th>Solution Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any virtualized data center with heterogeneous network equipment capable of sending flows (NetFlow v5/v9, sFlow, IPFIX)</td>
<td>By processing flows from network devices, you will get in real time: - Health score and Failure risk of network physical interfaces - Path between communicating end points (VM to VM or VM to Host)</td>
</tr>
<tr>
<td>VMware Virtual Distributed Switch (VDS)</td>
<td>All functionality is available. By enabling IPFIX on VDS, and flows on other network devices, V2P Network Visibility will correlate virtual and physical traffic, resolving VM-to-VMhost adjacency, and ToR (Top of the Rack) switches</td>
</tr>
<tr>
<td>VMware Virtual Standard Switch (VSS)</td>
<td>V2P Network Visibility solution will function with VSS. By processing flows from network devices, V2P Network Visibility will report Health score and Failure risk of network devices and interfaces. Path between communicating peers (VMs and/or physical hosts) is reported, but VM-to-Vmhost adjacency is not resolved</td>
</tr>
<tr>
<td>VMWare NSX</td>
<td>V2P Network Visibility relies on VDS for correlating virtual and physical network traffic. Other components, including VMware NSX virtualization platform itself, are optional</td>
</tr>
</tbody>
</table>
Before You Begin

Pre-Installation Checklist

Please be sure to have the following before you begin the installation of V2P Network Visibility components:

✓ Installation Prerequisites – You have to login as root for Linux and administrator for Windows installations and updates of NetFlow Optimizer and External Data Feeder for NFO.

✓ License – A license from NetFlow Logic sales is required before you can begin using NetFlow Optimizer software. Please contact sales@netflowlogic.com for a license.

✓ Physical and Virtual Network Devices - Please refer to the “Configuring NetFlow” section in your Cisco (or other) device or VMware VDS documentation.

✓ Visualization Platform – Splunk Enterprise.

Installation Steps

2. Configure NFO input (port numbers where flow information is sent to from network devices and VDSs)

3. Configure NFO output for Splunk (IP address and port number where NFO sends out syslogs)

4. Configure NFO SNMP data retrieval service

5. Install External Data Feeder for NFO

6. Upload V2P Network Visibility Module into NetFlow Optimizer – see “Module Configuration” on page 9 of this document

7. Configure V2P Network Visibility Module parameters:
 a. List of vCenter Virtual Machines – set automatic updates
 b. List of ToRs management addresses – this list is optional, but it would help resolving ToRs

8. Install and configure your visualization component - V2P Network Visibility for Splunk (Splunk App) and Technology Add-on for NetFlow (Add-on) – see V2P Network Visibility for Splunk section on page 13

9. Restart NetFlow Optimizer – the system is operational within approximately 15 minutes
NetFlow Optimizer

Agentless Deployment

Installing yet another agent on a large network to provide comprehensive network traffic information is costly, difficult to roll out and manage. NetFlow Optimizer was designed to avoid those issues. A single instance of NFO, deployed in a data center, is capable of processing and analyzing massive volumes of network metadata.

Configure your all flow-capable exporters, such as ToR switches, core and aggregation switches, routers, and virtual switches, such as VDS or Open vSwitch to send NetFlow/sFlow/IPFIX to NetFlow Optimizer.

NFO Configuration

NetFlow Optimizer is available as Windows or Linux installers, or as a Virtual Appliance. When installed, NFO is automatically configured to listen to flow data on UDP port 9995. You can change this port and/or add additional ports to receive flows from all your exporters. You also need to configure NetFlow Optimizer output. You can configure up to 16 output destinations.

You also need to install External Data Feeder for NFO on the same server with NFO or on a separate server. External Data Feeder for NFO is required for integration with vCenter.

Please refer to NetFlow Optimizer Installation and Administration Guide for additional details.
V2P Network Visibility Module

This Module reports network health by detecting anomalies in traffic volume and packet rate. It reports health and failure risk of each interface of all physical network devices configured to send flows to NFO. Health score is calculated using multivariate algorithms based on the actual network traffic reported by network devices in flow records. It also reports virtual and physical network traffic paths for all VM-to-VM, VM-to-Host, and Host-to-Host conversations.

Reported Metrics

V2P Network Visibility Module reports information about health of the network devices and their interfaces, as well as the actual path traversed through network devices by flows between communicating hosts (VMs or real hardware). This information is reported periodically, and the frequency is configurable (see Module Configuration section).

Table 3 – Reported Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Traffic Load</td>
<td>Interface relative load is computed by dividing actual traffic going through the interface by the nominal speed of the interface. The nominal speed is obtained through SNMP polling of the network device (ifSpeed or ifHighSpeed), %</td>
</tr>
<tr>
<td>Relative Packet Rate</td>
<td>Relative rate is computed by dividing current packet rate of the interface by the maximal packet rate sustainable at a current average packet size observed during the data collection interval, %</td>
</tr>
<tr>
<td>Health Score</td>
<td>The health score is a single value metric calculated for each network interface over a short data observation time interval, e.g. 30 seconds. It takes into account relative traffic load and relative packet rate on the interface. Health score values range from 0 to 100. The health above 40 is normal, indicating no attention is required. Health score between 25 and 40 is the indication of medium to serious problem. The score below 25 indicates that the interface is not functioning properly.</td>
</tr>
<tr>
<td>Failure Risk</td>
<td>Failure risk is a predictive indicator. Its calculation is based on Health Score, Load, and Relative Rate, plus dynamic changes of these metrics. Failure risk values range from 0 to 100. The risk below 60 indicates that the interface has no problem and no problem is expected in the future. 60 to 75 indicate a low to medium chance of a failure. The risk above 75 indicates a serious problem now or failure in the near future.</td>
</tr>
</tbody>
</table>

Network Path Reporting and Rendering

Network path is a reconstruction of routes in a network taken by the traffic between a pair of communicating peers A and B (VM-to-VM, VM-to-Host, and Host-to-Host). Paths from A to B and from B to A are reported separately. It is important to keep in mind that flow-based path resolution is a best effort process, as device adjacency may not be certain. Path reporting relies on forwarding information (next hop), when available, and on traffic statistical methods of the Module. In certain cases additional path resolution could be achieved by superimposing paths from A to B and
from B to A. However, some segments of the network routes may remain unresolved, and are shown with dashed lines. Let’s consider the following scenarios.

Scenario 1. Partially resolved network path

This example shows a partially resolved network path in the VM₁ -> VM₂ direction. Please note that the first hop (Host₁ -> ToR₁) is not resolved: ToR₁ is a first network node in the segment which reports VM₁ -> VM₂ communication but we have no knowledge if there are other network nodes between Host₁ and ToR₁ which may be forwarding the traffic and not configured to send flows to NFO.

Scenario 2. Fully resolved network path

A complete resolved network path is produced by superimposing VM₁ to VM₂ and VM₂ to VM₁ communications observations, as each direction complements the unresolved segment of the path in the opposite direction.

Scenario 3. Multiple intersecting segments

This example shows topology with five devices where network traffic from Host₁ (192.168.66.12) to Host₂ (192.168.63.15) may pass in three different ways: D₁ (192.168.63.151) to D₅ (192.168.63.153) to D₅ (192.168.63.155), D₄ (192.168.63.252) to D₅ (192.168.63.155), and D₂ (192.168.63.254). In practice this is a common load balancing scenario.

Please note a dashed line between D₅ and Host₂. This means that none of the nodes in this path was determined to be adjacent to the Host₂ and therefore this segment is shown as unresolved. A dashed line between D₂ and Host₂ implies that traffic flowing from Host₁ to Host₂ was reported by device D₂ which did not provide any forwarding information and was not reported as next hop by any of the other devices, so both segments Host₁ to D₂ and D₂ to Host₂ are shown as unresolved.
Scenario 4. “A bag of routers”

In this example all network devices between Host₁ (192.168.66.12) and Host₂ (192.168.63.15) did not report any forwarding information, therefore all segments of three paths are shown as unresolved.

Scenario 5. Multiple paths to a device

In this example device D₁ reports traffic from Host₁ (192.168.66.12) to Host₂ (192.168.63.15) via a plurality of the interfaces. Such situation is possible when there is one or more intermediate network devices situated between Host₁ and D₁ (192.168.63.252) which do not report the traffic flows.

How sFlow and Sampling Affect Path Reporting

NetFlow Optimizer V2P Network Visibility Module determines path only from information carried in NetFlow. It will use next-hop IP address to build the corresponding path segment when this information is available. When next-hop is not reported in NetFlow, the Module will use statistical methods to build paths, thus the sampling rate of NetFlow or sFlow may have a direct effect on the accuracy of path building. In addition, as path building process is dynamic, sampling may result in showing path segments that are no longer active.

How VDS Configuration Affects Path Reporting

1. The Switch IP address is specified (Step 5)
2. The option Process internal flows only is disabled (Step 8)
Module Configuration

The Module should be uploaded into NFO and enabled. In NetFlow Optimizer Home page click on upload button, and select the package to upload (e.g. v2p_network_visibility-2.5.0.0.858-linux-x86_64.zip).

Once uploaded, click on ⬗ to enable the Module. You don’t have to restart the server – the Module is operational when enabled.

This Module is highly configurable. Click on V2P Network Visibility Module and you will be presented with the following screen.
Configure your vCenter integration by setting up *List of cVenter Virtual Machines* Data set. All other parameters are optional. Contact NetFlow Logic support before changing any parameters.

Table 4 - Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default sampler rate</td>
<td>A default sampling rate for sampled flows for which exact sampling information is missing. min = 1, max = 100000, default = 1</td>
</tr>
<tr>
<td>Network path information reporting interval, sec</td>
<td>This parameter controls Network path periodic updates. Once discovered path is detected and reported, if it is still active, it will be reported again after this period of time. min = 120 sec, max = 14400 sec, default = 300 sec</td>
</tr>
<tr>
<td>Output method: 0 - syslog (push), 1 - REST (pull), 2 - both</td>
<td>This parameter controls how you want the output from this Package to be available. values {0, 1, 2}, default = 0</td>
</tr>
<tr>
<td>Inactivity timeout for network paths, sec</td>
<td>This parameter controls inactivity period after which path is no longer reported. min = 60 sec, max = 14400 sec, default = 300 sec</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Network Health Analytics and Reporter</td>
<td>This parameter controls network health score reporting interval in seconds. Network health is reported in syslogs with nfc_id = 20180 and nfc_id = 20181. min = 5, max = 600, default = 23</td>
</tr>
<tr>
<td>Network Paths Analytics</td>
<td>This parameter controls the internal interval used in detecting paths between pairs of peers. min = 5, max = 600, default = 37</td>
</tr>
<tr>
<td>Network Paths Reporter</td>
<td>This parameter controls network path reporting interval in seconds. Network path is reported in syslogs with nfc_id = 20183. min = 5, max = 600, default = 203</td>
</tr>
<tr>
<td>VM - VM Hosts Adjacency</td>
<td>This parameter controls VM – VM Host-ToR Adjacency reporting interval in seconds. This information is reported in syslogs with nfc_id = 20184. min = 5, max = 600, default = 41</td>
</tr>
<tr>
<td>ToR Switches Discovery</td>
<td>This parameter controls the internal interval in seconds used in discovering ToR switches. min = 5, max = 600, default = 29</td>
</tr>
<tr>
<td>Top Tunnels</td>
<td>This parameter controls Top Tunnels reporting interval in seconds. This information is reported in syslogs with nfc_id = 20187. min = 15, max = 600, default = 30</td>
</tr>
<tr>
<td>List of vCenter Virtual Machines</td>
<td>This watch list is populated by External Data Feeder for NFO Agent by connecting to one or several vCenters</td>
</tr>
<tr>
<td>List of ToRs management addresses</td>
<td>This watch list helps the Module to determine which devices are Top of the Rack Switches. ToRs detected automatically if list is empty</td>
</tr>
</tbody>
</table>

Click on **List of vCenter Virtual Machines** to setup integration with vCenters, vShield, and NSX as shown below.
Once connected to vCenter, you can enable NetFlow export from VDSs, specifying it at VDS Portgroup level.

You don’t need to restart NetFlow Optimizer or enable/disable the Module in order for the new parameters to take effect.

Table 5 - Configuration Parameters - List of vCenter Virtual Machines

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-update by VMWARE vCenter Virtual Machine monitor</td>
<td>This check box enables External Data Feeder for NFO agent which queries vCenter and populates the list of Virtual Machines with their VDS and VTEP.</td>
</tr>
<tr>
<td>Next time</td>
<td>Next scheduled update time based on the schedule setting below.</td>
</tr>
<tr>
<td>Schedule/Expression</td>
<td>Unix cron expression</td>
</tr>
<tr>
<td>vCenter server name</td>
<td>IP address or name of vCenter server</td>
</tr>
<tr>
<td>vCenter user name/password</td>
<td>vCenter login credentials</td>
</tr>
<tr>
<td>Log level</td>
<td>Leave blank or set to DEBUG for troubleshooting</td>
</tr>
<tr>
<td>Data Records</td>
<td>This watchlist is a csv list in the following format: VDS IPv4 address, VM IPv4 address, VM host, VTEP IPv4 address, VM name, VM UUID</td>
</tr>
</tbody>
</table>

Table 6 - Configuration Parameters - List of ToRs management addresses

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Records</td>
<td>Management IP addresses of network devices which are Top of the Rack Switches.</td>
</tr>
</tbody>
</table>
V2P Network Visibility Solution Guide

This section describes installation, configuration, and user instructions of Splunk solution components. They are: V2P Network Visibility for Splunk App (https://splunkbase.splunk.com/app/2824/) and Technology Add-on for NetFlow (https://splunkbase.splunk.com/app/1838/). The App and Add-on are designed to work together.

⚠️ The App expects data in sourcetype=flowintegrator.

Installing into a Single Splunk Server

Step 1: Install the App and Add-on

Step 2: Create the Splunk data input

1. Create the $SPLUNK_ROOT/etc/apps/TA-netflow/local/inputs.conf file, and add the following lines to it:

   ```
   [udp://10514]
   sourcetype = flowintegrator
   ```

2. By default NetFlow Optimizer events will be stored in main index. In case you want to use another index, for example flowintegrator, please create the $SPLUNK_ROOT/etc/apps/TA-netflow/local/indexes.conf file, and add the following lines to it:

   ```
   [flowintegrator]
   homePath = $SPLUNK_DB/flowintegrator/nfi_traffic/db
   coldPath = $SPLUNK_DB/flowintegrator/nfi_traffic/colddb
   thawedPath = $SPLUNK_DB/flowintegrator/thaweddb
   ```

 In that case make sure your $SPLUNK_ROOT/etc/apps/TA-netflow/local/inputs.conf file contains the following:

   ```
   [udp://10514]
   sourcetype = flowintegrator
   index = flowintegrator
   ```

 Also, in V2P Network Visibility for Splunk App (netflow_netops) you need to create $SPLUNK_ROOT/etc/apps/netflow_netops/local/macros.conf file contains the following. Edit this file to match your Splunk installation.

   ```
   [netflow_index]
   definition = (index=main OR index=flowintegrator) sourcetype=flowintegrator
   ```

3. Restart Splunk
Installing into a Distributed Splunk Environment

If you have Splunk distributed environment (separate search heads / indexers / forwarders), install V2P Network Visibility for Splunk App on search heads. Install Add-on on search heads and indexers/heavy forwarders.

There are three ways to ingest NetFlow Optimizer events into Splunk:

1. NFO sends events directly to Splunk indexer
2. NFO sends events directly to Splunk Universal Forwarder (they could be installed together or on separate machines)
3. NFO sends events to syslog-ng or rsyslog, and Splunk Universal Forwarder sends them to Splunk indexers

Configure Universal Forwarder Input

Create or modify %SPLUNK_HOME%/etc/system/local.inputs.conf file as follows. In general there are two options, either to listen directly for netflow events on a specific port or optionally to monitor files created by syslog-ng or rsyslog.

Receiving Syslogs Directly from NFO (UDP port 10514)

Add the following lines to inputs.conf file and modify it for your netflow index, if necessary:

```
[udp://10514]
sourcetype = flowintegrator
index = flowintegrator
```

Configuring Universal Forwarder with syslog-ng or rsyslog

In this scenario syslog-ng or rsyslog are configured to listen to syslogs sent by NFO on a UDP port 10514. Syslog-ng or rsyslog are usually writing the logs into configurable directories. In this example we assume that those are written to /var/log/netflow.

Add the following lines to inputs.conf file and modify it for your netflow index, if necessary:

```
[monitor:///var/log/netflow]
sourcetype = flowintegrator
index = flowintegrator
```

It is very important to set sourcetype=flowintegrator and to point it to the index where V2P Network Visibility for Splunk App and Add-on are expecting it.

Configure Universal Forwarder Output (Target Indexers)

During the installation of the Universal Forwarders a Receiving Indexer can be configured, as it can be seen here:
It is an optional step during the installation. If it was not configured or if load balancing is required, additional Receiving Indexers can be added later by adding to the `%SPLUNK_HOME%/etc/system/local/outputs.conf` file:

```plaintext
[tcpout]
defaultGroup = default-autolb-group
[tcpout:default-autolb-group]
server = 10.1.0.100:9997,10.1.0.101:9997
```

More info about load balancing:
http://docs.splunk.com/Documentation/Splunk/latest/Forwarding/Setuploadbalancingd#How_load_balancing_works

V2P Network Visibility for Splunk App Dashboards

Path Analytics Dashboard

This dashboard enables you to explore network conversations between communicating network peers.

First select the time interval and press `<Submit>` button. You will see a graph representing all network conversations during the selected time. Physical hosts are grouped in the inner circle, and VMs are grouped in the outer circle.
Narrow down the results by specifying full or partial IP address of communicating peers. Apply additional filters by specifying VTEP IP and/or VXLAN ID. Use the slider to highlight communicating endpoints affected by devices and interfaces with low health score.

Select the first object (A) by clicking on the IP address. Select the second object (B) from a drop down. The Path panel will dynamically populate with the path between the selected objects.

Explore paths by selecting direction: A->B, B->A, or bidirectional A<->B. This panel is a great way to see where the problem is. The color of network nodes indicates the health score of the interfaces in the path of communication between the selected objects.

The table on the right hand side provides the following information about the selected device:
- Device health score – a number between 0 and 100 with the lower scores indicating a device with one or more problematic interfaces

- Device failure risk score - a number between 0 and 100 with the higher scores indicating an interface with a high probability of failure

- Relative traffic load on a most active interface as a percent of its nominal capacity

- Relative packet rate on a most active interface as a percent of a maximal packet rate sustainable at a current average packet size

For interfaces relaying a traced communication the following information is presented:

- Interface health score

- Interface failure risk score

- Relative traffic load on this interface as a percent of its nominal capacity

- Relative packet rate on this interface as a percent of a maximal packet rate sustainable at a current average packet size

- A total number of bytes passed in each direction through this interface over a selected time interval

- A total number of packets passed in each direction through this interface over a selected time interval

Top Tunnels (VTEPs) Dashboard

This dashboard shows top VTEPs by traffic over selected period of time. Drill down functionality allows to view individual VM to VM conversations going through selected VTEP. You can drill down further by selecting VM to VM conversation to see the path of communication between peers, which shows VM hosts where virtual traffic is encapsulated, and how it traverses the physical network, including device interface health score, for efficient troubleshooting and planning.
Top VMs by Traffic Dashboard

This dashboard shows top VMs by traffic over selected period of time. Drill down to path to see VM to VM conversations over physical network.

![Top VMs by Traffic Dashboard](image)

Network Health Dashboard

In this dashboard the network devices comprising the physical and the virtual parts of the network are presented in a tree view. Icon colors indicate NFO health score of each device based on its interface with the lowest score. NFO health score is a number between 0 and 100 with lower scores corresponding to a problematic device. On this dashboard green icons indicate healthy devices while yellow icons identify devices reporting some abnormal conditions. Red icons indicate that one or more interfaces on a device are not functioning properly. Grey icons represent virtual network devices, such as VMware VDS. Their health score is not calculated.

![Network Health Dashboard](image)
When you click on a network device node, the tree expands showing all interfaces of the selected device, again color-coding them according to their health score. When you click on an interface, the drill-down panels on the right show the traffic details for the selected interface.

The table on the right hand side provides the following information about the selected interface:

- Interface health score – a number between 0 and 100 with the lower scores indicating a problematic interface
- Interface failure risk score - a number between 0 and 100 with the higher scores indicating an interface with a high probability of failure
- Ingress and egress traffic rate
- Ingress and egress packet rate
- Relative traffic load on the interface as a percent of its nominal capacity
- Relative packet rate as a percent of a maximal packet rate sustainable at a current average packet size

Three drilldown panels on far right show network traffic characteristics and interface wellbeing scores over a selected time interval. A 65% threshold mark displayed on the historic charts helps identifying time intervals when network paths served by this interface are in a high risk of failure territory.

From this dashboard you can jump to Path Analytics dashboard to view all network conversations going through the selected interface.

Start Your Trial

Download NetFlow Optimizer and V2P Network Visibility components and register to receive your 60-day evaluation license (https://www.netflowlogic.com/download/).